

2.69 inch AMOLED Display Series

Dalian Good Display Co., Ltd.

Product Specifications

Customer	Standard
Description	2.69" AMOLED DISPLAY
Model Name	GD0J0269C01-T
Date	2023/04/14
Revision	1.0

D	esign Engineerin	g			
Approval Check Design					
宝刘 印玉	燕修印凤	之吴良			

No.18, Zhonghua West ST, Ganjingzi DST, Dalian, CHINA

Tel: +86-411-84619565

Email: info@good-display.com

Website: www.good-display.com

Content

No.	Items	Page
1	General Description	4
2	Mechanical Specification	6
3	Absolute Maximum Ratings	6
4	Electrical Characteristics	6
5	Electro-optical Characteristics	7
6	FPC Pin Assignment	9
7	AC Characteristics	10
8	Recommended Operating Sequence	18
9	Outline Information	21
10	Reliability Test	27
11	Handling Precautions	27
12	Packing Specification	30

1. General Description 1.1 Introduction

2.69" MDS is a color active matrix AMOLED module using Low Temperature Poly-silicon TFT's (Thin Film Transistors) as active switching devices. This module has a 2.69inch diagonally measured active area with 800RGBx600 resolutions (800horizontal by 600vertical pixel arrays). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display 16.7M colors.

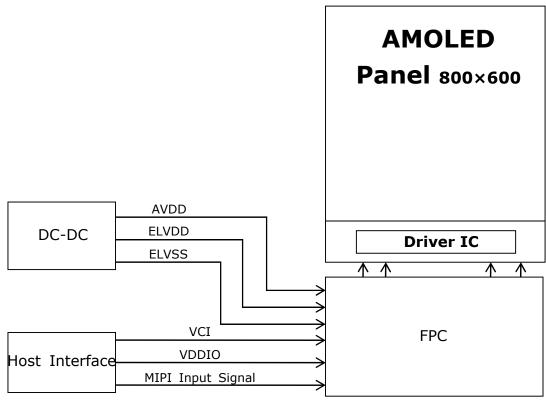
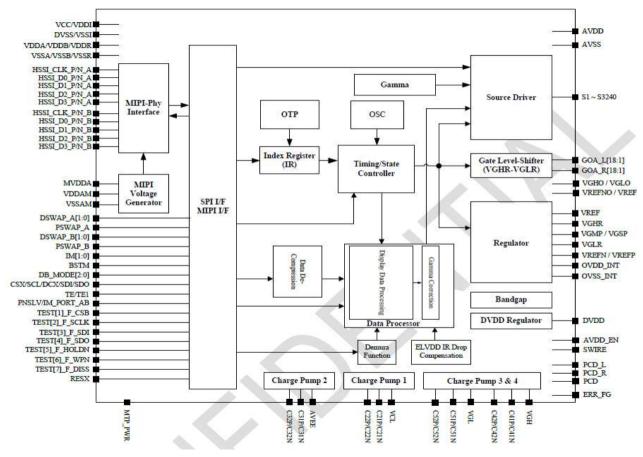



Figure 1.1

1.2 Driver IC Block Diagram

Figure 1.2

1.3 Features

- 1) Display Colors : 16.7M
- 2) Display Format : 2.69" Pentile RGB : 800×600
- 3) Interface : DSI 2-lane
- 4) Driver IC : RM69700 (Raydium)
- 5) Touch IC : S3601(Synaptics)
- 6) Polarizer : Hard Coating Polarizer

1.4 Application

Night-vision Device

2. Mechanical Specification

	Table 2.1					
Item	Specifications	Unit	Remark			
Panel outline	56.6(W) × 47.25(H)×0.505(T)	mm				
Number of dots	1600(W) × Pentile × 600(H)	Dots				
Active area	54.6(W) × 40.95(H)	mm				
Diagonal Inch	2.69	inch				
Pixel pitch	68.25(W) × 68.25(H)	um				
Pixel Arrangement	Pentile					
Weight	4.87±0.1	g				
Glass Thickness	0.20 (LTPS glass without PF) 0.305 (Encap)	mm				

3. Absolute Maximum Ratings

	Table 3.1						
Item	Symbol	Min.	Max.	Unit	Note		
I/O Voltage	VDDIO	-	6.6	V			
Operation Voltage	VCI	-	6.6	V			
	ELVDD	4.6	-	V			
EL Driving Voltage	ELVSS	-3	-	V			
Supply voltage	TSP_VDD	-0.3	3.6	V			
(TSP)	IOVDD	-0.3	3.6	V			
Operating temperature	Topr	-40	85	°C	-		
Storage temperature	Tstg	-55	125	С°	-		

4. Electrical Characteristics

Test Condition: Temp=25±2℃

Table 4.1

Item	Min.	Тур.	Max.	Unit	Remark
Logic Power	1.62	1.8	1.98	V	
ELVDD	4.6	4.6	4.6	V	
ELVSS	-3	-2.0	-1.4	V	100mV Step
AVDD	6.8	6.8	7.8	V	
VCI	2.7	3.0	3.6	V	
VDDIO	1.62	1.8	1.98	V	
Logic Current	20	23	26	mA	
Freq	-	50	-	Hz	
VGH	5.7	6	7	V	
VGL	-7	-6	-5.4	V	
VGH	5.7	6	7	V	

Notes :

- 1. VGH is TFT Gate operating voltage.
- 2. VGL is TFT Gate operating voltage.
- 3. The value is just the reference value. The customer can optimize the setting value by the different D-IC.
- 4. RM69700, DualRam.

5. Electro-optical Characteristics

The test of optical specifications shall be measured in a dark room (ambient luminance \leq 1lux and temperature = 25±2°C) with the equipment of Luminance meter. We refer to θ , $\emptyset = 0^{\circ}$ (= θ_3) as the 3 o'clock direction (the "right"), θ , $\emptyset = 90^{\circ}$ (= θ_{12}) as the 12 o'clock direction ("upward"), θ , \emptyset =180° (= θ 9) as the 9 o'clock direction ("left") and θ , \emptyset =270° $(= \theta_6)$ as the 6 o'clock direction ("bottom"). While scanning θ and/or \emptyset , the center of the measuring spot on the Display surface shall stay.

lte	m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
		θ ₃			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Viewing	Horizontal	θ ₉	CR ratio≥1600	00			0	Neted
Angle	Vertical	θ_6		80	-	-		Note1
	Vertical	θ ₁₂						
I	Brightness		θ=0° At Center	380	420	460	nit	
Contra	st ratio	CR	θ=0°	100,000: 1	-	-	-	Note2
Brightness	Uniformity	LRU	W255	75	80	-	%	Note3
	White	X _W		0.2790	0.2990	0.3190		
		Уw	θ=0°	0.2949	0.3149	0.3349	CIE 1931	
	Red	XR		0.660	0.680	0.700		Note4
Color of		УR		0.300	0.320	0.340		
CIE	Green	XG	0-0	0.215	0.245	0.275		NOLC4
coordinate	Green	УG		0.685	0.715	0.745		
	Blue	ХB		0.121	0.141	0.161		
	Dide	Ув		0.025	0.045	0.065		
C	olor Gamut		θ=0° vs. NTSC	-	100	-	%	
Re	sponse Time		G To G			2	ms	
Cro	oss Talk(5nit)		Window: black		3.5	5	%	Note5
Cross Ta	Cross Talk(100nit&420		Background: gray127	-	-	3	70	NOLES
	Colorshift		W255	3(30°)	4(45°)	5(60°)	JNCD	
	Gamma		Subsection Control	1.9	2.2	2.5	-	-
Life time	LT93 I	B10	Room temperature	-	240	-	hrs	
	LT93 I	B10	50 ℃		72		hrs	

Table 5.1

Notes :

1. Viewing angle is the angle at which the contrast ratio is greater than 1600:1. The viewing angles are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the panel surface (see Figure 3).

7/30

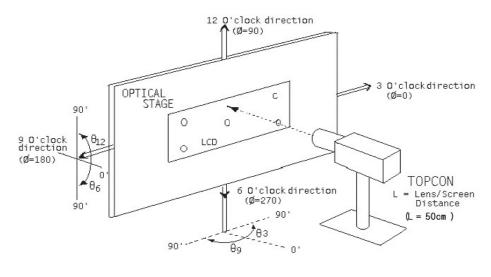


Figure 5.1

2. Contrast measurements shall be made at viewing angle of $\theta = 0^{\circ}$ and at the center of the panel surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (see Figure 3) Luminance Contrast Ratio (CR) is defined mathematically.

 $CR = \frac{Luminance when displaying a white raster}{Luminance when displaying a black raster}$

3. Uniformity. LRU Refer to figure as below:

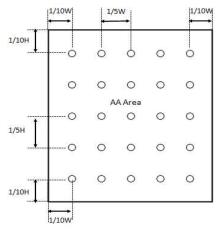
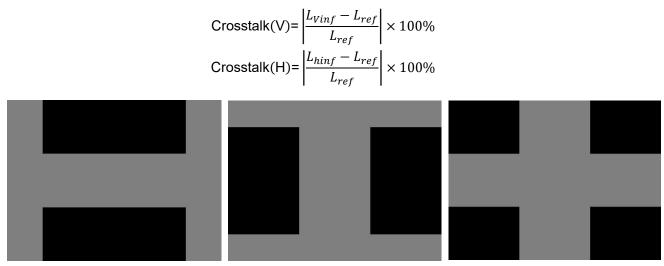


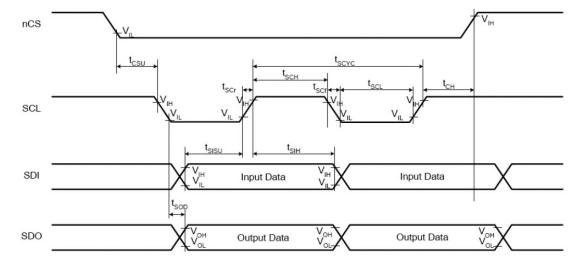
Figure 5.2

Uniformity measurements shall be made at $\theta = 0^{\circ}$ and at the different points of the panel surface. Luminance shall be measured with all pixels in the view field set to W/R/G/B at 255 Gary level, respectively. Luminance uniformity=Lmin/Lmax ×100%

- 4. The color chromaticity coordinates specified in Table 4 shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.
- 5. Crosstalk measurement shall be done at the center of the different pattern and the result shall be calculated as follow formula.

- a. measure luminance at the center.
- b. calculate cross talk as below equation:




Figure 5.3

6. FPC Pin Assignment

Main FPC assignment- AMOLED Panel Input/output Signal Interface. Recommended connector: Molex5052743040

No.	Name	No.	Name
1	NC	2	GND
3	NC	4	ELVDD
5	NC	6	ELVDD
7	NC	8	ELVSS
9	GND	10	ELVSS
11	D1N	12	AVDD
13	D1P	14	GND
15	GND	16	VDDIO
17	CLKN	18	VCI
19	CLKP	20	GND
21	GND	22	SWIRE
23	D0N	24	OLED_EN
25	D0P	26	ERR_FG
27	GND	28	TE
29	MTP_PWR	30	RESX

Table 6.1

7. AC Characteristics 7.1 Serial Interface Characteristics


Figure 7.1

Table 7.1

Signal	Symbol	Parameter	MIN	MAX	Unit
	T _{SCYC}	Clock cycle (Write)	100	-	ns
	T _{SCYC}	Clock cycle (Read)	300	-	ns
	T _{SCH}	Clock "H" pulse width (Write)	40	-	ns
SCL	T _{SCH}	Clock "H" pulse width (Read)	140	-	ns
SUL	T _{SCL}	Clock "L" pulse width (Write)	40	-	ns
	T _{SCL}	Clock "L" pulse width (Read)	140	-	ns
	T _{SCr}	Clock rise time	-	5	ns
T _{SCf}		Clock fall time	-	5	ns
500	T _{CSU}	Chip select setup time	20	-	ns
nCS T _{CH}		Chip select hold time	50	-	ns
SDI	T _{SISU}	Data input setup time	20	-	ns
	T _{SIH}	Data input hold time	20	-	ns
000	T _{SOD}	Data output setup time	-	120	ns
SDO	T _{SOH}	Data output hold time	5	-	ns

Notes:

1.Logic high and low levels are specified as 20% and 80% of VDDI for Input signals. 2.Ta = -40° C to 85°C, VDDI=1.62V to 1.98V, VCI=2.5V to 3.6V, GND=0V

7.2 I2C Bus Timing Characteristics

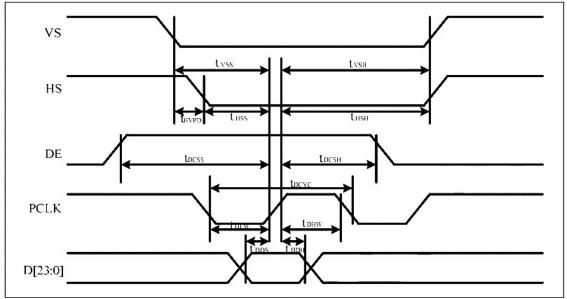


		Table 7.2			
Signal	Symbol	Parameter	MIN	MAX	Unit
	Tckl + Tckh	Operate frequency	-	400	ns
I2C_SCL	Tckl	CLK low	1300	-	ns
	Tckh	CLK high	600	-	ns
	Tr	Data rising time	-	300	ns
	Tf	Data falling time	-	300	ns
	Tdathd	Data hold time	0	900	ns
I2C SDA	Tdatsu	Data setup time	100	-	ns
120_3DA	Tstahd	Start hold time	600	-	ns
	Tstasu	Start setup time	600	-	ns
	Tstpsu	Stop setup time	600	-	ns
	Tbf	Bus free time	1300	-	ns

Table 7.2

Notes:

- 1. Logic high and low levels are specified as 20% and 80% of IOVCC for input signals.
- 2. Ta=-40 to 85°C, IOVCC=1.62V to 1.98V, VCI=2.5V to 3.6V, GND=0V.

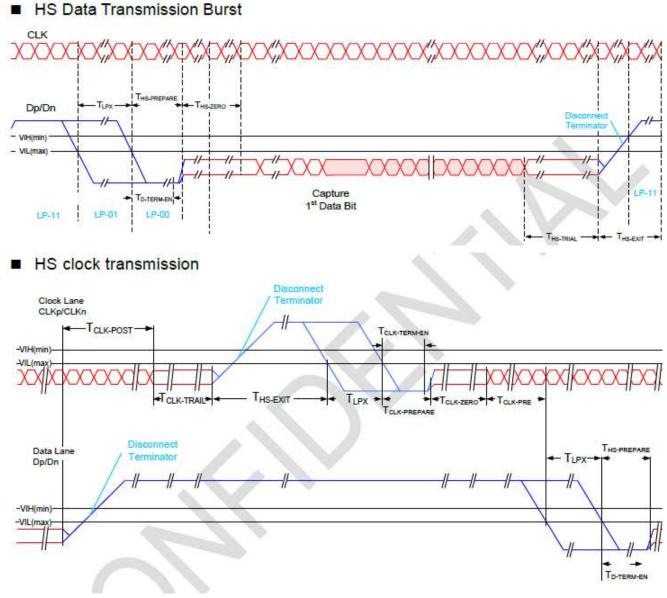

7.3 RGB Interface Characteristics

Figure 7.3

Signal	Symbol	Parameter	MIN	TYP	MAX	Unit
	t _{DCYC}	PCLK cycle time	15	-	-	ns
PCLK	t _{DLW}	PCLK low pulse width	7	-	-	ns
	t _{DHW}	PCLK high pulse width	7	-	-	ns
VS	t∨ss	VS setup time	3	-	-	ns
V3	t _{∨sн}	VS hold time	3	-	-	ns
	t _{HSS}	HS setup time	3	-	-	ns
HS	t _{HSH}	HS hold time	3	-	-	ns
	t _{HVPD}	HS to VS falling edge	400	-	-	ns
DE	t _{DCSS}	DE setup time	3	-	-	ns
	t _{DCSH}	DE hold time	3	-	-	ns
D[00.0]	t _{DDS}	Data setup time	3	-	-	ns
D[23:0]	t _{DDH}	Data hold time	3	-	-	ns

Notes:

- 1. Logic high and low levels are specified as 20% and 80% of IOVCC for input signals.
- 2. Ta=-40 to 85° C, IOVCC=1.62V to 1.98V, VCI=2.5V to 3.6V, GND=0V.

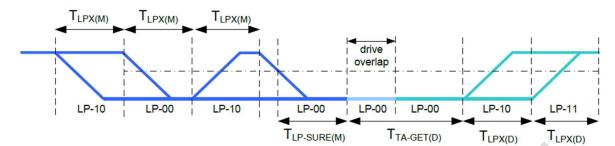
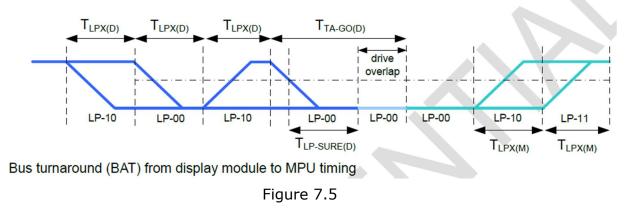

7.4 DSI Timing Characteristics

Figure 7.4


Parameter	Description	MIN	MAX	Unit
	Time that the transmitter continues to send HS clock			
-	after the last associated Data Lane has transitioned	60pg (50 x l II		20
T _{CLK-POST}	to LP Mode. Interval is defined as the period from	60ns+52×UI		ns
	the end of $T_{HS-TRIAL}$ to the beginning of $T_{CLK-TRAIL}$.			
	Time that the transmitter drives the HS-0 state after			
T _{CLK-TRAIL}	the last payload clock bit of a HS transmission	60		ns
	burst.			
-	Time that the transmitter drives LP-11 following a	200		20
T _{HS-EXIT}	HS burst.	300		ns
T _{CLK-TERM-EN}	Time for the Clock Lane receiver to enable the HS	Time for Dn to	38	ns

	line termination, Starting from the time point when	reach V _{TERM-EN}		
	Dn crosses V _{IL, MAX} .			
	Time that the transmitter drives the Clock Lane LP-			
T _{CLK-PREPARE}	00 Line state immediately before the HS-0 Line	38	95	ns
	state starting the HS transmission.			
	Time that the HS clock shall be driven by the			
T _{CLK-PRE}	transmitter prior to any associated Data Lane	8		UI
	beginning the transition from LP to HS mode.			
T _{CLK-PREPARE}	T _{CLK-PREPARE} + time that the transmitter drives the	200		20
+T _{CLK-ZERO}	HS-0 state prior to starting the Clock.	300		ns
	Time for the Data Lane receiver to enable the HS	Time for Dr. to		
T _{D-TERM-EN}	line termination, starting from the time point when	Time for Dn to	35ns+4×UI	ns
	Dn crosses V _{IL, MAX} .	reach $V_{\text{TERM-EN}}$		
	Time that the transmitter drives the Data Lane LP-			
T _{HS-PREPARE}	00 Line state immediately before the HS-0 Line	40ns+4×UI	85ns+6×UI	ns
	state starting the HS transmission.			
T _{HS-PREPARE}	T _{HS-PREPARE} + time that the transmitter drives the HS-	145ns+10×UI		20
+T _{HS-ZERO}	0 state prior to transmitting the Sync sequence.	1450S+10×01		ns
	Time that the transmitter drives the flipped			
T _{HS-TRIAL}	differential state after last payload data bit of a HS	60ns+4×UI		ns
	transmission burst.			
TAB-SKEW	Timing Skew between Port A and Port B		100	

Bus Turnaround Procedure (From MPU to display module)

Bus turnaround (BAT) timing

Table 7.5

■ Timing Specifications for Low Power Transmission:

Parameter	Description	Min	Тур	Max	Unit	Notes
T _{LPX(M)}	Transmitted length of any Low-Power state period of MCU to display module	50		150	ns	1,2
T _{TA-SURE(M)}	Time that the display module waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround.	T _{LPX(M)}		2*T _{LPX(M)}	ns	2
T _{LPX(D)}	Transmitted length of any Low-Power state period of display module to MCU	50		150	ns	1,2
T _{TA-GET(D)}	Time that the display module drives the Bridge state (LP-00) after accepting control during a Link Turnaround.		5*T _{LPX(D)}		ns	2
T _{TA-GO(D)}	Time that the display module drives the Bridge state (LP-00) before releasing control during a Link Turnaround.		4*T _{LPX(D)}		ns	2
T _{TA-SURE(D)}	Time that the MPU waits after the LP-10 state before transmitting the Bridge state (LP-00) during a Link Turnaround.	T _{LPX(D)}		2*T _{LPX(D)}	ns	2

Notes:

1. TLPX is an internal state machine timing reference. Externally measured values may differ slightly from the specified values due to asymmetrical rise and fall times.

2. Transmitter-specific parameter

7.5 Reset Timing

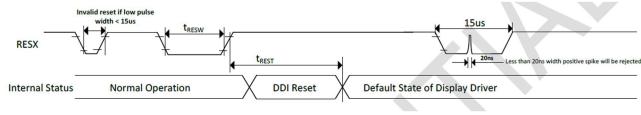
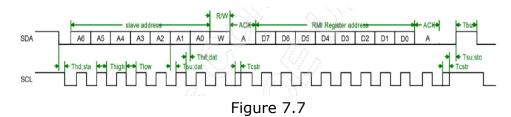



Figure 7.6

Reset timing @VDDI=1.62V to 1.98V, VSSA=DVSS=VSSI=0V, Ta=-40°C to 85°C								
Symbol	Parameter	MIN	TYP	MAX	Note	Unit		
t _{RESW}	Reset low pulse width	15			 Shorter than 5us, Reset rejected Longer than 15μs, IC reset Between 5μs and 15μs, It depends on voltage and temperature condition. 	μs		
	Depat complete time	-	-	10	When reset applied at sleep-in mode	ms		
t _{REST}	Reset complete time	-	-	120	When reset applied at sleep-out mode	ms		

Table 7.6 Reset timing @VDDI=1.62V to 1.98V, VSSA=DVSS=VSSI=0V, Ta=-40℃ to 85℃

7.6 Touch Panel I2C Timing Characteristics

Deservator	Sumbal		Standard Mod	е		Fast Mode		
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Uni
SCL clock frequency	f _{SCL}	5-	-	100	-	-	400	kHz
Clock stretch time	^L CSTR	-	<25	-	-	<25	-	us
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{hd;sta}	4.0	-	-	0.6).	Z-	us
Low period of the SCL clock	t _{LOW}	4.7	-	-	9 (9.3	- AD	-	us
High period of the SCL clock	t _{HIGH}	4.0	-	- 20	0.6	S.	-	us
Setup time for repeated START condition	t _{su;sta}	4.7	-	Ś	0.6	-	-	us
Data hold time	thd;dat	0	- 20	Ø.	O	-	-	us
Data out valid time	tvalid;dato	-	ja ja	3.45		-	0.9	us
Data setup time	t _{su;dat}	250	6		100	-	-	ns
Rise time of SDA/SCL	t _R	- ((1 2	1000	20 + 0.1C _B	-	300	ns
Fall time of SDA/SCL	t⊧	20	- 6	300	20 + 0.1C _B	-	300	ns
Setup time for STOP condition	tsu:sto	4.0	102	2.	0.6	-	-	us
Bus free time between a STOP and START condition	t _{BUF}	4.7		-	1.3	-	-	us
Capacitive load for each bus line	CB	-~	XS-	400	-	-	400	pF

Table 7.7

7.7 Touch Panel RESET Timing Characteristics

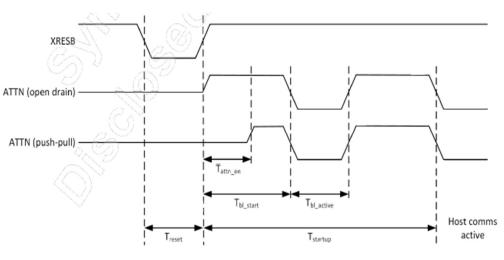


Figure 7.8

Tabl	le	7.8	
	-		

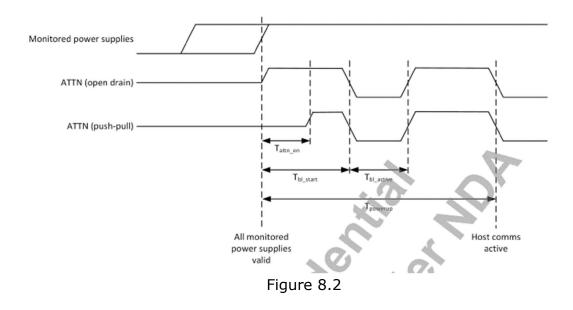
Power supply	Min	Max	Unit
T _{attn_en}	5	21	ms
Tpowerup		45	ms
T _{startup}	12 11	45	ms
Tbl_start (bootloader start)		30	ms
T _{bl_active} (bootloader active)	- MO	15	ms
T _{reset}	100	-	ns

8. Recommended Operating Sequence

8.1 Display Power on/off Sequence

Power On sequence 96ms 10ms IC state OTP Reload unknown Reset Command Exe. Power-up sequence Display-On VDDI VCI TON2 Т3 т4 RESX Flash Reload Period Flash reload DISPON Initial setting SLPOUT MIPI I/F \square LP-11 т6 T2 AVDD_EN SWIRE **T7** Т9 Power Off sequence Display-On Blanking SLPIN Reset unknown IC state VDDI VCI RESX DISPOFF SLPIN MIPI I/F M T10 T11 T12 T13

Power Sequence and Generation


Contral	Value			1.1	Demanda
Symbol	Min.	Typ.	Max.	Unit	Remark
TON2	2	· 4	-	ms	
T2	1	-		ms	MIPI stabilization time
T3	1	-	-	ms	Effective hardware reset period
T4	10	1	-	ms	OTP reload time
T6	0		F 1	ms	Initial code input finish to SLPOUT command input
T7	84	96	4	ms	Normal power-up sequence
T 9	2	1.5	. 5	VS	Display-On Blanking region
T10	2		-	VS	Display-Off blanking region
T11	1	-		VS	Blanking region
T12	1		-	ms	Effective hardware reset period
T13	2	121	÷ .,	ms	Power off period

Timing	Specification	of Power	On/Off Sequence
 1 mining	opeoincution		on on ocquence

Notes:

VS means the time period of a complete display frame and is approximately 16ms if internal display timing is used.

8.2 Touch Panel Power on Sequence

Power supply	Min	Max	Unit
T _{attn_en}	5	21	ms
Tpowerup		45	ms
T _{startup}	(<u>7</u> 2) [[45	ms
T _{bl_start} (bootloader start)		30	ms
T _{bl_active} (bootloader active)	0, - "0	15	ms
T _{reset}	100	-	ns

9. Outline Information 9.1 Total Outline

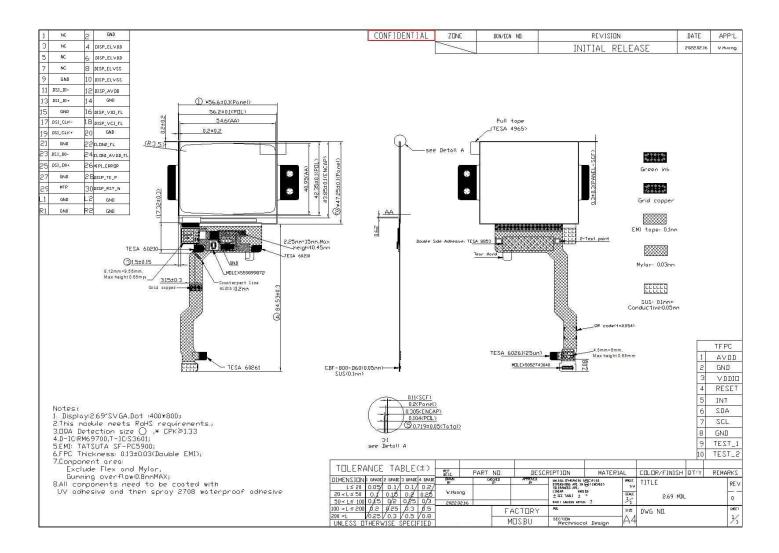
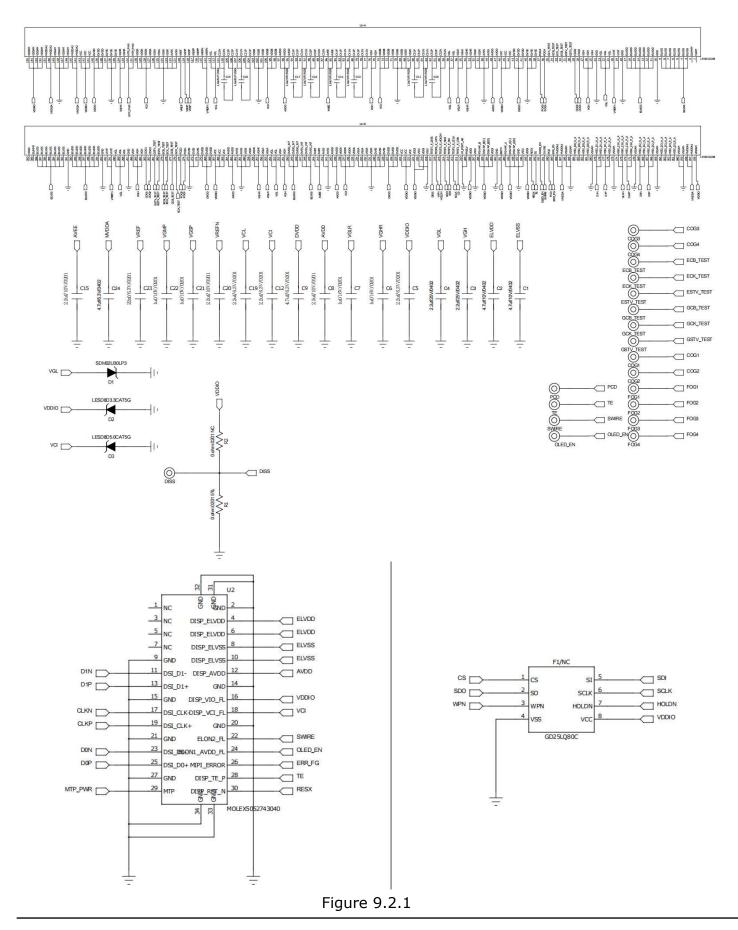
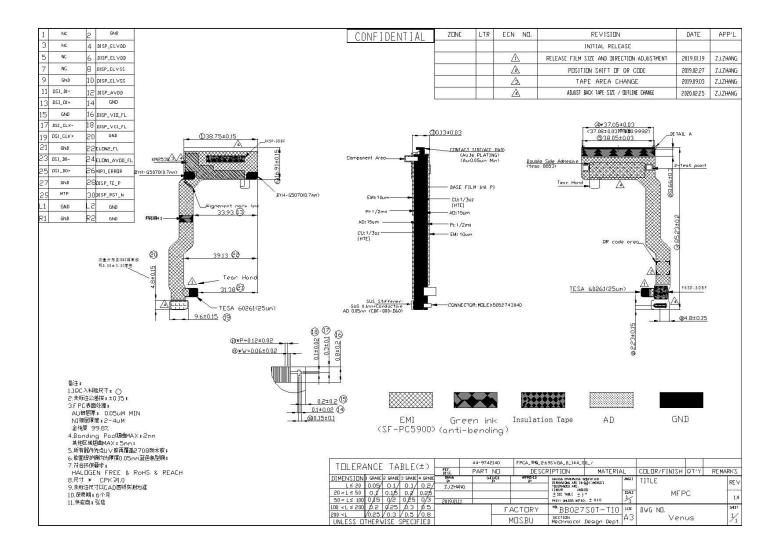



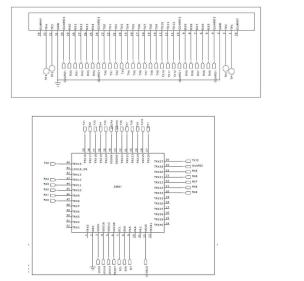
Figure 9.1

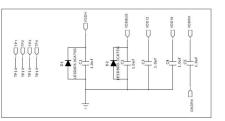
9.2 Main FPCB Drawing


9.2.1 Main FPC Schematic Diagram

9.2.2 Main FPC Electronic Part List

Comment	Description	Designator	Footprint	Quantity	Value
Сар	Capacitor	C16-17	0201	2	1uF/10V
Сар	Capacitor	C10-11 C13-14	0201	4	1uF/16V
Сар	Capacitor	C18,C25	0201	2	1uF/6.3V
Сар	Capacitor	C21-22	0201	2	1uF/10V
Сар	Capacitor	C6-7	0201	2	1uF/16V
Сар	Capacitor	C8,C15,C20	0201	3	2.2uF/10V
Сар	Capacitor	C5,C12,C19	0201	3	2.2uF/6.3V
Сар	Capacitor	C23	0201	1	22nF/6.3V
Сар	Capacitor	C9	0201	1	4.7uF/6.3V
Сар	Capacitor	C3-4	0402	2	2.2uF/25V
Cap	Capacitor	C1-2	0402	2	4.7uF/10V
Сар	Capacitor	C24	0402	1	4.7uF/6.3V
Diode	diode	D1	SDM02U30LP3	1	
Diode	diode	D2/NC	LESD8D5.0CT5G,LESD8D3.3CAT5G	1	NC
Diode	diode	D3/NC	LESD8D5.0CT5G,LESD8D5.0CAT5G	1	NC
Res1	Resistor	R1	0201	1	0ohm/5%
Res1	Resistor	R2/NC	0201	1	0ohm/5%
u2	Connector		MOLEX5052743040	1	
flash		F1/NC	GD25LQ80C	0	NC


Table 9.2



9.2.3 Main FPC Placement

Figure 9.2.3 PVT

9.3 Touch Sensor Drawing 9.3.1 TSP FPC Schematic Diagram

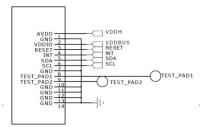


Figure 9.3.1

9.3.2 TSP FPC Electronic Part List

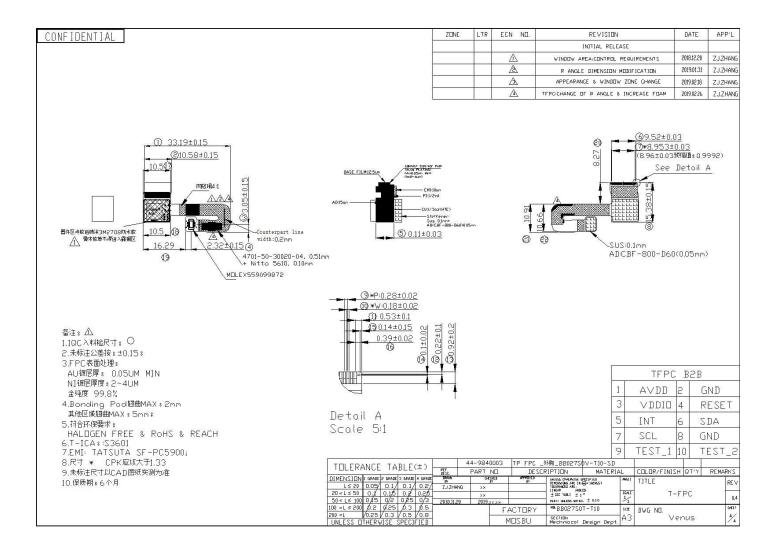


Figure 9.3.2

TFPC							
Comment	mment Description Designator Footp		Footprint	Quantity	Value		
Сар	Capacitor	C3/C4	0402	2	1uF/6.3V		
Сар	Capacitor	C2	0402	1	1uF/6.3V		
Сар	Capacitor	C1/C5	0402	2	1uF/10V		
Diode	Diode	D1/NC	LESD8D5.0CAT5G	1	NC		
Diode	Diode	D2/NC	LESD8D3.3CAT5G	1	NC		
u1	Connector		MOLEX559099872	1			
T-IC	Touch IC		S3601	1			

Table 9.3.2

9.3.3 TSP FPC Placement

	Table 10.1							
No.	Item	Condition	Qnty	Result	Judgment Criterion			
1	HTS	80°C,240hr	5 ea	OK	1. In the process of the test sample to			
2	LTS	-40°C,240hr	5 ea	OK	work properly, no dysfunction。			
3	THS	60°C/90%RH,240hr	5 ea	OK	2. The test is finished, return to room			
4	НТО	70°C,240hr	5 ea	OK	temperature, the sample			
5	LTO	-20°C,240hr	5 ea	OK	appearance, display function is			
6	TST	-40°C~80°C, 60 Cycles	5 ea	OK	normal, no new display abnormal。			

10. Reliability 10.1 Environmental test

10.2 Other test

Table 10.2

No.	Item		Condition	Qnty	Result	Judgment Criterion
1	ESD	Front on display	±4KV(Contact)/ ±8kV(Air), 150pF/330Ω	5 ea	ОК	In the process of the test sample to work properly, no dysfunction。

11. Handling Precautions 11.1 Mounting Method

The AMOLED panel module consists of two slim glasses with polarizer which can easily get damaged. Since the module is constructed as to be fixed by utilizing fitting holes in the printed circuit board. Extreme care should be used when handling the AMOLED modules.

11.2 Caution of AMOLED Handling and Cleaning

When cleaning the display surface, use soft cloth solvent as recommended below and wipe gently.

- Isopropyl alcohol
- Ethyl alcohol
- Trichlorotriflorothane

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface. Do not use the following solvent.

- Water
- Ketone
- Aromatics

Do not wipe ITO pad area with the dry or hard materials that will damage the ITO patterns. Do not use the following solvent on the pad and prevent it from being contaminated.

- HCFC (Other area except ITO pad can use the HCFC for cleaning process)
- Soldering flux
- Chlorine(Cl), Sulfur(S)
- Spittle, Fingerprint

If the product is not wrapped with a desiccant added pad, ITO pattern can be damaged by corrosion. Good Display suggests wrapping a product with a desiccant unless customers particularly indicate that they do not want it. In case ITO pattern corrodes due to the usage of chlorine, sulfur or customer's mishandling of the product, the responsibility lies with the customer.

11.3 Caution against Static Charge

For AMOLED module, use C-MOS LSI drivers, therefore we recommend that you ; Connect any unused input terminal to VCI or VSS, do not input any signals before power is turned on, and ground your body, work/assembly areas, assembly equipment to protect against static electricity. It could occur static electricity when taping off the film which protects AMOLED. Against static charge, you should make sure that the product is safe or not by experiment in advance.

11.4 Packing

- The packing principle is that AMOLED module should keep its packing condition at the time of delivery.
- For safety & avoiding the module damage, Carton box must stack the below 4 boxes. When storing the AMOLED after unpacking, note the followings.
- AMOLED module is consisted of GLASS and assemblies. It should avoid pressure, strong impact, and being dropped from a height.
- To prevent modules from degradation, do not operate or store them in a place where they are directly exposed to sunlight or high temperature/humidity.

11.5 Caution for Operation

- If you do not follow normal POWER ON, OFF sequence or abnormal operating, then AMOLED module can be damaged electro-optically and does not recover. Do not change software without Good Display confirmation.
- Response time may extremely delay at a temperature lower than operating range; AMOLED does not normally operate at a high temperature. But this may recover at a proper temperature.
- When you set optimal operating voltage to AMOLED module, you can see the optimal contrast of AMOLED. So, add voltage controllable function at SET Module.
- AMOLED module may not display normally when twisting power or pressing power is added. Therefore you should secure AMOLED module maximum thickness at set assembly not to have any pressure affect AMOLED module.
- Electro-chemical reaction may occur when there is humidity on pad; therefore, you should use AMOLED Module below maximum operating humidity.

- AMOLED Module Power Vdd should be designed to protect surge current at SET Module.
- You should not damage connector and cable for AMOLED module assembly by force folding or by applying extreme power.
- AMOLED may not display normally when it is interfered by surrounding elements, therefore you should consider setting design not to damage AMOLED module by surrounding elements.
- To satisfy EMI standards, you should plan your design after considering emitting energy.
- We cannot guarantee display characteristics outside viewing area, therefore your set window should be fixed into viewing area.
- Image-sticking may occur if AMOLED displays same image for a long time, so you need to make a change for AMOLED.
- When remove the window protective film, necessarily need to apply as a way to prevent Cushion and conductive tape Delamination.

- As an upper Figure, the handler takes off the direction of the arrow to remove the protective film.

11.6 Storage

- Place in a dark place where neither exposure to direct sunlight nor any fluorescent light is permitted and keep at room temperature & room humidity.
- Store with no contact with polarizer surface.

[It is recommended to store them as they have been contained in the inner container when we delivered them.

11.7 Safety Precautions

- Disassembly or modification may cause electric shock, damages to sensitive part inside of the AMOLED module, dust adhesion, or scratches on the display part.
- In the event that the contents of AMOLED module are on skin, wipe them with a paper towel or gauge and wash the part well, and receive medical attention if necessary.
- Do not use the AMOLED module for the special purpose besides display units.
- Be careful of the glass chips that may cause injury to fingers of skin, when the display part is broken.
- For keeping safe quality from outer exposure or contamination, modules should be consumed within 2 months after unpacking.

12. Packing Specification 12.1 Box Pack

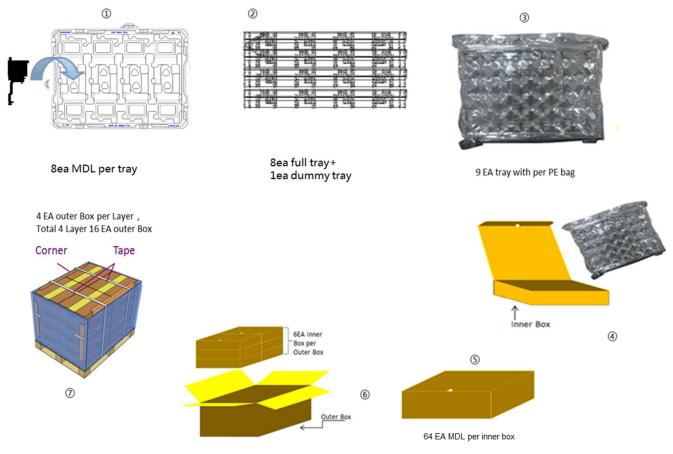


Figure 12.1